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Motivation

• Past works have focused primarily on the performance and portability of 
codes across differing hardware architectures

• Performance portability is also required between compilers on the same 
architecture

• Explore performance portability using widely available benchmarks and 
mini-apps

• Provide feedback to vendors on issues identified



Benchmarks & 
Mini-applications



Benchmarks & Mini-Apps

• SPEC ACCEL (Standard Performance Evaluation Corporation Accelerator 
suite)
– Collection of computationally intensive parallel applications in C and Fortran
– Includes OpenACC, OpenMP target offload, and OpenCL versions

• GenASiS (General Astrophysics Simulation System)
– A simulation system (a collection of solvers, manifolds, physics) for astrophysics 

simulation
– A subdivision, GenASiS Basics, contains simplified proxy-applications

• su3 
– mini-application extracted from MILC (Lattice QCD code)
– matrix-matrix multiply with complex numbers



Experimental Setup: SPEC ACCEL 

• SPEC ACCEL (https://www.spec.org/accel)
– Three benchmark sets: OpenCL, OpenACC, and OpenMP

• Here we focus on OpenACC and OpenMP sets
• ACC: contains OpenACC ports 
• OMP: contains OpenMP ports

– Consists of 15 benchmarks in a wide range of domains: thermodynamics, molecular 
dynamics, image processing, and more!  

• 7 in C; 6 in Fortran; 2 use C & Fortran
• Target system: Summit

– ACC experiments: 
• PGI 20.1, GCC 9.2.0

– OMP experiments: 
• XL 16.1.1 PTF8,  GCC 9.2.0, LLVM 11.0.0-rc1 (C-only)

– Single node jobs offloading to a single 
NVIDIA V100 GPU

Summit supercomputer (Source: ORNL)

https://www.spec.org/accel


Results: SPEC ACCEL

• XL compiler and PGI compiler can compile 
all benchmarks
– Improvement over previous XL versions

• GCC support can compile 11 OpenACC and 
all OpenMP benchmarks
– 7 OpenMP and 2 OpenACC benchmarks 

encounter runtime errors
• All but one of the C benchmarks compile 

and run successfully with LLVM
– CSP encounters a compiler error



Cloverleaf OpenACC / PGI:
● ~33x faster than OpenMP / GCC
● ~1.5x faster than OpenMP / XL

Results: SPEC ACCEL

Cloverleaf CUDA:
● ~43x and ~2x faster than 

OpenMP with GCC and XL, 
respectively

● ~1.3x faster than PGI OpenACC 

Cloverleaf CUDA: https://uk-mac.github.io/

https://uk-mac.github.io/


Lessons Learned: SPEC ACCEL

• More OpenMP implementations can now successfully compile the SPEC 
ACCEL suite

• Can achieve good performance with OpenMP without significant changes 
to the code 
– More work is needed to match optimized CUDA versions for some of the 

benchmarks 
• GCC offloading has improved but performance gaps remain
• Need to work with implementation providers to report issues

– Iterative improvements resulted from collaboration with XL team
– Submitting issues for GCC



Experimental Setup: GenASiS

• GenASiS
– Target system: Summit, Frontier (future)
– Programming model: 

• OpenMP (CPU + target offload)
• CUDA / HIP library routines, to supplement 

missing functionality in OpenMP 4.5
• CUDA / HIP kernels (experimental only)

– Compilers: 
• XL Fortran 16.1.1 PTF 8, nvcc / hipcc, GCC

• 1 GPU + n CPU threads per MPI task
– “proportional resource tests” 

comparisons on Summit: 
7 CPU threads + 1 GPU per MPI task: 
jsrun -r6 -c7 -g1 -a1 -bpacked:7

Weak-scaling of GenASiS Basics RiemannProblem



Results: GenASiS Basics RiemannProblem
Kernel timings for 50 cycles, 3D - 2563 cells per GPU (lower is better/faster)

Timings for XL 7-threads CPU and 
GCC 10.1.0 OpenMP offload on are 
scaled down by 25X to fit this plot.



Lesson Learned from GenASiS

• Explicit memory management and control of data movement is essential 
for performance
– persistent memory allocation on the device
– explicitly map data location on GPU → avoid (implicit) allocation and transfer

• Performance parity between OpenMP offload and CUDA is achievable
– OpenMP is more portable
– OpenMP has benefits of being more “natural” to the application
– compilers need to do a good job of optimization
– no need to rewrite kernels, simpler to port from multi-threading to GPU offload
– can continue to exploit base language feature (Fortran)



Experimental Setup: su3 

• su3 mini-app
– Target system: Cori GPU Nodes, Summit
– Programming model: OpenMP, CUDA
– Compilers: 

• Clang 11 [Cori]
• CCE 9.0.0 (Classic) [Cori]
• CCE 10.0.0 (LLVM) [Cori]
• NVCC 10.2.89 [Cori, CUDA]
• XL 16.0.0-5 [Summit]

– Mini-app: matrix-matrix multiply with 
complex numbers, proxy for MILC



Results: su3 mini-app

GFLOPs per Compiler ● Excess DRAM transactions responsible 
for Clang slowdown

● Cray-classic slowdown associated with 
small grid size, low utilization
○ Can get 4.6x speedup by increasing 

num_teams

● Unnecessary memory flushes in Clang 
caused by splitting directives, 
interleaving code

● Restructuring directives gives an 18x 
speedup with Clang



● Tuning is necessary for best performance across compilers
○ Particularly of launch parameters: compiler defaults can be quite poor

● Splitting constructs can impair performance
○ Avoid interleaving code between teams and parallel directives

● Some implementations are more robust than others
● Guide tuning and changes with profiling

Lessons Learned: su3 mini-app



How to get Efficient 
Compilers?

Three (short) stories of application problems 
and better compilers



How To Get Efficient Compilers?  --- Talk to the compiler people ...
Three (short) stories of application problems and better compilers

1. HPGMG 

Application people: “One performance limiter I see with LLVM/Clang is a huge amount of time spent in 
cuMemAlloc and cuMemFree calls.”
Compiler People (as I recall it): Thanks for reporting this, we’ll look into it!
Compiler People (as I recall it): Can you try this version?
Application people: “I now only see 1 cuMemAlloc [...] The net effect is that this particular version of HPGMG runs 
2.4x faster”



How To Get Efficient Compilers?  --- Talk to the compiler people ...
Three (short) stories of application problems and better compilers

2. (Mini)QMCPack 

- Observe a problem and file a bug:
Bug 46450 - More registers are used when multiple target regions are compiled together

(paraphrased)
- Compiler people: How to reproduce the problem?
- Application people: Here is a reproducer!
- Compiler people: I see, it’s a weird implementation detail, can you try this version please?
- Application people: It works for me, there are still issues but this solves my problem for now.

https://bugs.llvm.org/show_bug.cgi?id=46450


How To Get Efficient Compilers?  --- Talk to the compiler people...
Three (short) stories of application problems and better compilers

3. GridMini SU(3)xSU(3) @ SOLLVE Hackaton (recently)          [graphs and quotes by: Meifeng Lin (BNL)]

Day 1. “The performance of Benchmark_su3 is poor (~100 GB/s vs. 680 GB/s in CUDA on V100).”

Day 2. Tropical Storm Isaias hit the East Coast

Day 3. - talking about the performance problems with the compiler vendor
- trying out if a known performance problem was hit
- turns out “-fopenmp-cuda-mode improves the performance of GridMini’s Benchmark_su3 significantly!”

Day 4. - Profiling the code, here with nvprof:

“Culprit for poor performance at small memory footprints: 30% time spent on cuMemAlloc/cuMemFree”
- report the problem to the compiler vendor

“Application/Compiler Team communication is key!”



Conclusions

• Performance portability is often required not just between architectures 
but also between compilers on the same architecture

• As seen with GenASiS and SU(3)xSU(3), it is not necessary to sacrifice 
performance for portability
– OpenMP kernels can achieve performance parity with their CUDA version 

• As seen with su3, significant speedups can be attained by tuning 
parameters and rearranging OpenMP directives

• Talk to compiler vendors about observations, issues, problems, and ideas!
– More implementations that perform well on various architectures benefit 

everyone!



Thank you! Questions?


